○ 學年度轉學生招生考試試題 國立政治大學

統計學系 别

考試時間 7月6日(夏)第一

- 1. (40pts). For each of the following statements, determine whether it is true or false. Do not give explanation.
 - (a) Given a sequence $\{a_n\}_{n=1}^{\infty}$ of real numbers, then $\lim_{n\to\infty} a_n = a$ if and only if any neighborhood of a contains infinitely many terms of the sequence $\{a_n\}$.
 - (b) The set of rational numbers Q is dense in the real line R.

系

- (c) Suppose f and g are both uniformly continuous on \mathcal{R} . If f(x) < g(x) for all x < 0, then $f(0) = \lim_{x \to 0^{-}} f(x) < \lim_{x \to 0^{-}} g(x) = g(0).$
- (d) If $f: \mathcal{R} \longrightarrow \mathcal{R}$ is differentiable and strictly increasing, then f'(x) > 0 for all $x \in \mathcal{R}$.
- (e) Consider two continuous functions $f, g: \mathcal{R} \longrightarrow \mathcal{R}$. Then the set $\{x \in \mathcal{R}: |f(x) g(x)| > 0\}$ 1) is open in \mathbb{R} .
- (f) If two power series $\sum_{k=0}^{\infty} a_k x^k$ and $\sum_{k=0}^{\infty} b_k x^k$ have as their radius of convergence r_a and r_b respectively, then the power series $\sum_{k=0}^{\infty} (a_k + b_k) x^k$ has min (r_a, r_b) as its radius of convergence.
- (g) If $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ has first-order partial derivates and $\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial y}(x,y) = 0$ for all $(x,y) \in \mathbb{R}^2$, then f is a constant function.
- (h) Consider the sequence of differentiable functions $\{f_n\}_{n=1}^{\infty}$ with $f_n:[0,1] \longrightarrow \mathcal{R}$. If f_n converges uniformly to a differentiable function $f:[0,1]\longrightarrow \mathcal{R}$ on [0,1], then $\lim_{n\to\infty} f'_n(x) = f'(x)$ for all $x \in [0,1]$.
- (i) If $f:[0,1] \longrightarrow \mathcal{R}$ is monotone, then f is integrable on [0,1].
- (j) Suppose $f: R = [0, 1] \times [0, 1] \longrightarrow \mathcal{R}$ is bounded. Then we have $\underline{\int \int_{\mathbb{R}} f \leq \overline{\int_0^1} \left(\underline{\int_0^1} f(x, y) dx \right) dy \leq \underline{\int \int_0^1} f(x, y) dx$ $\int \int_R f$.

國立政治大學 (〇) 學年度轉學生招生考試試題

当試科目高学校转分	系 別	統計學集	考試時間	ク月 6	日(五)第	_	節
-----------	-----	------	------	------	-------	---	---

- 2. Please state the following definition.
 - (a) (4pts). We say a series $\sum_{k=1}^{\infty} a_k$ is conditionally convergent provided that
 - (b) (6pts). Let $f:[a,b]\to\mathcal{R}$ and $f_n:[a,b]\to\mathcal{R}$ for $n\in\mathcal{N}$. We say $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f on [a,b] provided that ______.
 - (c) (6pts). Suppose $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ and $\mathbf{u} = (u_1, u_2)$ is a unit vector $(u_1^2 + u_2^2 = 1)$. We say f has a directional derivative at the origin (0,0) in the direction of \mathbf{u} provided that
- 3. (12pts). Prove or disprove that if $f: (-1,1) \longrightarrow \mathcal{R}$ is continuous and bounded, then f is uniformly continuous on (-1,1). Justify your answer.
- 4. (12pts). Prove or disprove that if $f: [-1,1] \longrightarrow \mathcal{R}$ is continuous, nonnegative and $\int_{-1}^{1} f = 0$, then f(x) = 0 for all $x \in [-1,1]$. Justify your answer.
- 5. (10pts). Suppose $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ and we already know that $f(x,y) = \frac{xy^2}{x^2+y^4}$ for $(x,y) \neq (0,0)$. Is it possible to define a suitable value for f(0,0) such that f is continuous at (0,0)? Justify your answer.
- 6. (10pts). Given $f:[a,b] \to \mathcal{R}$ and $g:[c,d] \to \mathcal{R}$, define $h:[a,b] \times [c,d] \to \mathcal{R}$ by h(x,y)=f(x)g(y). Let $P_x=\{x_0=a< x_1< \ldots < x_n=b\}$ be a partition of [a,b], $P_y=\{y_0=c< y_1< \ldots < y_m=d\}$ be a partition of [c,d], and $P=P_x\times P_y$, a partition of $[a,b]\times [c,d]$. Please prove that $U(P,h)\leq U(P_x,f)U(P_y,g)$. (Note U(P,h) is the upper (Darboux) sum of function h based on partition P.)

國立政治大學 101 學年度轉學生招生考試試題

Γ															
1	5	試	科	目數理統計學	,	系	別	統計系	考	試時間	7月	6 日(五)	第	_	節

- 1. Calculate the integral $I = \int_{-\infty}^{\infty} \exp\left(\frac{-y^2}{2}\right) dy$. (10%)
- 2. Let X have the uniform distribution with p.d.f. f(x) = 1, 0 < x < 1, zero elsewhere. Find the distribution function of $Y = -2 \ln X$. What is the p.d.f. of Y? (10%)
- 3. Let X_1, X_2, \cdots be independent Bernoulli random variables, $X_i \sim Bin(1, p_i)$, and let $Y_n = \sum_{i=1}^n \frac{X_i p_i}{n}$. Show that the sequence Y_1, Y_2, \cdots converges stochastically to c = 0 as $n \to \infty$. (15%)
- 4. Let \overline{X} and S^2 be the mean and the variance of a random sample of size 36 from a distribution that is N(4,144). Calculate $Pr(0 < \overline{X} < 6, 45 < S^2 < 140)$. (10%) (do not need to give the exact value.)
- 5. Assume that $X_i \sim \text{Lognomal}(\mu_i, \sigma_i^2)$, $i=1,2,\cdots,n$ are independent. Find the distribution of
 - (a) $\frac{Y_3}{Y_5}$. (b) $\prod_{i=1}^n Y_i^4$. (c) Find $\mathsf{E}[\prod_{i=1}^n Y_i]$. (18%)
- 6. Let X_1, X_2, \cdots, X_n be a random sample from $N(\mu, \sigma^2)$. Show that the sample mean \overline{X} and each $X_i \overline{X}$, $i = 1, 2, \cdots n$, are independent. (15%)
- 7. Let X_1, X_2, \cdots, X_n be a random sample from a distribution with p.m.f $f(x) = \frac{1}{6}, x = 1, 2, \cdots, 6$, zero elsewhere. Let $Y = \min(X_i)$ and $Z = \max(X_i)$. Say that the joint distribution function of Y and Z is $G(y,z) = \Pr(Y \le y, Z \le z)$, where y and z are nonnegative integers such that $1 \le y \le z \le 6$.
 - (a) Show that $G(y,z) = F^n(z) [F(z) F(y)]^n$, $1 \le y \le z \le 6$, where F(x) is the distribution function associated with f(x).
 - (b) Find the joint p.m.f. of Y and Z. (22%)