考試科目 基礎數學 所 別 統計學系 考試時間 2月28日(六)第一節

- 1. (15 points) Find the following integrals.
 - (a) $\int_0^1 3.1^x dx$.
 - (b) $\int_0^1 \log_{3.1}(x) dx$.
 - (c) $\int_0^1 x^{3.1} dx$.
 - (d) $\int_0^1 \sin(x) dx.$
 - (e) $\int_0^1 \cos(x) dx.$
- 2. (20 points) Suppose that f is a differentiable function such that f(0) = 1 and

$$f'(x) = \frac{x}{2 + \sin(x)}$$

for $x \in (-\infty, \infty)$.

- (a) Find the minimum of f on $(-\infty, \infty)$.
- (b) Show that $\lim_{x\to\infty} f(x) = \infty$.
- 3. (10 points) Suppose that $a_1 = b_1 = 1$ and for $n \ge 2$,

$$a_n = a_{n-1} + \frac{n}{2 + \sin(n)}$$

and $b_n = 1/n$.

- (a) Determine whether $\lim_{n\to\infty} a_n b_n$ exists. Justify your answer.
- (b) Determine whether $\sum_{n=1}^{\infty} a_n b_n$ is finite. Justify your answer.
- 4. (5 points) Let $D_1 = \{(x, y) : x < 0 \text{ and } y < 0\}$ and $D_2 = \{(x, y) : x > 1 \text{ and } y > 1\}$. Define

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) \in D_1; \\ x/(1-y+x) & \text{if } y \le x \text{ and } (x,y) \notin D_1 \cup D_2; \\ y/(1+y-x) & \text{if } y > x \text{ and } (x,y) \notin D_1 \cup D_2; \\ 1 & \text{if } (x,y) \in D_2. \end{cases}$$

Determine whether f is continuous at (0,0). Justify your answer.

國立政治大學 104 學年度碩士班招生考試試題

第2頁,共2頁

考試科目 基礎數學 所別 統計學系 考試時間 2月28日(六)第一節

- 5. (20 points) Suppose that V is a vector space, and three vectors e_1 , e_2 and e_3 form a basis for V. Suppose that $L: V \to V$ is a linear transform such that $L(e_1) = e_1 + e_2$, $L(e_2) = e_2$ and $L(e_3) = e_1$. Find the dimension for the space $\{v \in V : L(v) = 0\}$ and the dimension for the range of L. Justify your answers.
- 6. (20 points) Suppose that A is a 3×3 real matrix with eigenvalues 1, 2, 3 and associated eigenvectors v_1 , v_2 and v_3 respectively.
 - (a) Can we conclude that v_1 , v_2 and v_3 are linearly independent? Justify your answer.
 - (b) Suppose that v_1 , v_2 and v_3 are orthogonal. Can we conclude that A is symmetric? Justify your answer.
- 7. (10 points) Suppose that -1 < a < 1 and

$$A = \left(\begin{array}{ccc} 1 & a & 0 \\ a & 1 & 0 \\ 0 & a & 1 \end{array}\right)$$

Find the eigenvalues of A. Show your work.

註

考	产 試	科	B	數理統計學	所	別	統計	考	試	時;	間	2月28日(六)第3節
				41413								

- 1. (25pts) Let Y~ Uniform(0, 1). Let $X = \theta Y^{1/3}$. Suppose that $X_1, X_2, ..., X_n$ are i.i.d. with distribution same as X.
 - (a) (5pts) Find the probability density function of X and the cumulative distribution function of $X_{(n)}$.
 - (b) (5pts) Obtain a complete and sufficient statistic for θ .
 - (c) (5pts) Obtain the MLE $\hat{\theta}$ of θ .
 - (d) (5pts) Find $E(\hat{\theta})$ and derive an unbiased estimator for θ .
 - (e) (5pts) Find UMVUE of θ .
- 2. (10pts) Let $X_1, X_2, ..., X_n$ be i.i.d. random variables from Gamma (α, β) distribution, where $\beta > 0$ is the unknown parameter and $\alpha > 0$ is a known constant. Show that $\sqrt{n}(\hat{\beta} \beta)$ converges to a non-degenerate asymptotic distribution as $n \to \infty$ and identify the distribution.
- 3. (10pts) Suppose that X has pdf $f(x|\theta) = 2\theta(1-2x) + 2x$ on [0,1] for $\theta \in \Theta = [0,1]$. A Bayesian wants to test H_0 : $\theta \le 0.4 vs$ H_a : $\theta > 0.4$. If the Bayesian's prior distribution is uniform on [0,1], what is the pearson's (0-1 loss optimal) test?
- 4. (10pts) Let the random variable X has p.d.f $f(x; \theta) = \frac{1}{\theta^2} x e^{-\frac{x}{\theta}}, x > 0$, (and 0 otherwise), $\theta \in \Omega = (0, \infty)$.

 What are the $E_{\theta} \tilde{\theta}_n$ and $\sigma_{\theta} (\tilde{\theta}_n)$. $\tilde{\theta}_n$ is the moment estimator of θ , $\tilde{\theta}_n = \tilde{\theta}_n (X_n)$, $X_n = (X_1, X_2, ..., X_n)$.
- 5. (45pts) Let $X_1, X_2, ..., X_n$ be i.i.d. random variables from the Uniform (0, 1),

$$Y_n = (\prod_{i=1}^n X_i)^{-\frac{1}{n}}$$
, and $Z = X_{(n)} - X_{(1)}$.

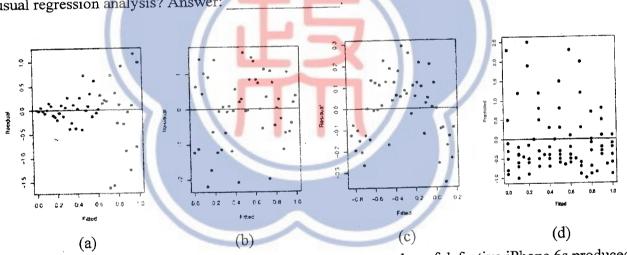
- (a)(20pts) Show that $\sqrt{n}(Y_n e) \Rightarrow N(0, e^2)$.
- (b)(25pts) Derive the probability density function of Z. (20pts). Is Z independent of $X_{(n)}$? (5pts).

註

																	\neg
考	試	科	目	統計方法	所別	統計學系	考言	式時	間	2	月 2	8 E	1(六) :	第	四	節
	P			41414			l										

(每小題5分,請依序作答)

1) The following ANOVA table is the output of a simple linear regression analysis for a dependent variable Y and an independent variable X.


ADICA.				
Source	SS	df	MS	F
Regression	300	1	300	4.5
Error	600	9	66.67	
Total	900	10		

- Q1) The proportion of variation in Y explained by the variation in X =______
- Q2) If the relationship between X and Y is negative, the coefficient of correlation = ______.
- Q3) Given $\alpha = 0.05$, is the slope of the regression line significant (yes/no)? _____. (Hint: The critical values $F_{0.95}(1, 9) = 5.12$, $F_{0.95}(1, 10) = 4.96$, $F_{0.95}(9, 10) = 3.02$)
- Q4) If the estimated regression equation is $\hat{Y} = 0.5 4X$, and we know $\overline{X} = 16$, $\sum (X \overline{X})^2 = 256$.

Given X = 10, what is the 95% confidence interval for the mean of Y?

(**Hint:** The critical values $t_{0.975}(9) = 2.262$, $t_{0.95}(9) = 1.833$, $t_{0.975}(10) = 2.228$, $t_{0.95}(10) = 1.812$)

Q5) The following are four residual plots (vs the fitted values), which one(s) violate the assumptions of usual regression analysis? Answer:

2) The production manager of Apple wants to compare the mean number of defective iPhone 6s produced on the factories in New York and Seattle. The manager obtained the following sample information regarding the number of defects:

	Mean	Sample Variance	Sample Size
New York	8	2.25	10
Seattle	10	5.11	10
Statut		1	

Q6) Given $\alpha = 0.10$, would you conclude that the variances of the two factories are the same? (yes/no)_

(**Hint**: $F_{0.95}(10, 10) = 2.98$, $F_{0.90}(10, 10) = 2.32$, $F_{0.95}(9, 9) = 3.18$, $F_{0.90}(9, 9) = 2.44$)

Q7) What is the 90% confidence interval for the mean of New York?

ⅰ 一、作答於試題上者,不予計分。ⅰ 二、試題請隨卷繳交。

備

第 2 頁, 共 3 頁

考	試	科	E	統言	†方法 屮\屮\	所別		統計	學系		考証	弋時	間 :	2 月	28 日	1(六)第「	四節
	Q8)	Ifo	ne l	believes th	at the varian	ces for th	e two fa	ctories	are th	e sam	ie, ar	nd the	ma	ınage	r clai	ms th	at the	true
		me	an :	number of	defects in Se	attle is la	arger. Co	mpute	the <u>t</u>	statist	ic fo	r test	ing	such	a clai	m.		
				tatistic =_		_·											#	
	Q 9)	If o	ne l	believes th	at the varian	ces for th	e two fa	ctories	are di	fferer	ıt, w	ill the	co	mput	ed tes	st stati	istic be	Э
					one obtained				•									
	Q10)) Ar	e tł	ne critical	values of the	t statistic	s used to	o <mark>pe</mark> rfo	orm the	e tests	in Q	8 an	d Q	9 the	same	? (yes	s/no)_	
3)	The	follo	owi	ng observ	ed scores we	re randon	nly selec	ted fro	om thre	ee ind	epen	dent	pop	ulati	ons A	., B, C	· ·	
					Population A			19	23	29	40		1					
					Population I			16	17	33	43							
				L	Population (30	29	_24_	45							
					puted test sta		he ANO	VA te	chniqu	ie is u	sed t	o coi	npa	re the	e three	e popi	ulation	1
				•	outed F statist			•										
					allis test can								e is	a dif	erenc	e amo	ong	
					C by using ra			_	100	0.					·			
	Q13) Gi	ven	the same	level of signi	ificance	$\alpha = 0.0$	5, are	the de	cision	s bas	sed o	n A	NOV	A and	d Krus	skal-W	Vallis
		test t	he	same? (ye	s/no)	(Hint	$:F_{0.95}(2,$	16) =	3.63,	$F_{0.95}(2$	2, 18)	= 3.	55,	$F_{0.95}$	(3, 19	= 3.	13)	
	Q14) Co	nsi	der the sco	ores of popula	ations B	and C as	paire	data,	the Po	earso	n's c	oef	ficier	it of c	orrela	ation	
	,	betw	eer	the two s	cores =								1					
	Q15) Co	nsi	der the sco	ores of popula	ations B	and C as	paired	l data,	the S _J	pearr	nan':	s co	effici	ent of	f corre	elation	ı
				the two s		7/		-		- 1								
4)	Fou	r mai	nuf	acturers of	flight bulbs a	re being	consider	red for	the de	eclar a i	tion (of Xr	nas	trees	on ca	ımpus	. The	
					asked for 10					turer.	The	num	bers	of a	cepta	ible ai	nd	
	unac	cept	abl	e bulbs fro	m each man	ıfacturer	are shov											
					7/				lanufa	-		5						
				No.	[14]		A	I	3	С		D						
					Unaccepta		12	- 8	3	5		11						
					Acceptable	e	88	9	2	95		89						
					Total	V.	100	10	00	100		10)				ſ	
	Q16) Ba	sed	on all the	samples, wh	at is the 9	95% cont	fidenc	e inter	val fo	r the	"pro	 port	ion c	of acco	eptabl	e light	t
		bulbs			(Hint: 2											•	Ũ	
	Q17) Co	ntir		Q16, assume					for the	e por	oulati	on r	orope	rtion	and o	ne wa	nts
					gin of error t													
		ize?							•	•	•						-	
				is the nameturer?	e of the hypo	thesis tes	t one car	n use t	o valid	late if	the o	quali	ty o	f bull	os "re	lated 1	to"	
					Q18, what is	the com	nuted tes	st stati	stic?									
					ms that 85%		_			ınd 15	3% O1	 fligh	t hu	lhe n	ot acc	rentah	مام	
					esis test to va													
				? (yes/no)			directo		iii ut t	110 10 1	C1 O1	51511	11100	11100	0.10,	uo yo	u agre	
備					作答於試題 試題請隨卷		下予計分	o									·	
					WAC DIT THE TO	·冰人 0						·						

第3頁,共3頁

考試科目 統計方法 所別 統計學系 考試時間2月28日(六)第四節

1. Student's t Distribution

Confidence Intervals, c

Confidence interval

					, -	
	80%	90%	95%	98%	99%	99.9%
		Level of	Significant	ce for One-1	ailed Test, o	X
df	0.10	0.05	0.025	0.01	0.005	0.0005
		Level of	Significano	e for Two-T	ailed Test, d	x
	0.20	0.10	0.05	0.02	0.01	0.001
1	3.078	6.314	12.706	31.821	63.657	636.619
2	1.886	2.920	4.303	6.965	9.925	31.599
3	1.638	2.353	3.182	4.541	5.841	12.924
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.869
6	1.440	1.943	2.447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3,499	5.408
8	1.397	1.860	2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.781
10	1.372	1.812	2.228	2.764	3.169	4.587
	;				0.100	4.507
11	1.363	1.796	2.201	2.718	3.106	4.437
12	1.356	1.782	2.179	2.681	3.055	4.318
13	1.350	1.771	2.160	2.650	3.012	4.221
14	1.345	1.761	2.145	2.624	2.977	4.140
15	1.341	1.753	2.131	2.602	2.947	4.073
16	1.337	1.746	2.120	2.583	2.921	4.015
17	1.333	1.740	2.110	2.567	2.898	3.965
3.5	1.330	1.734	2.101	2.552	2.878	3.922
19	1.328	1.729	2.093	2.539	2.861	3.883
20	1.325	1.725	2.086	2.528	2.845	3.850
21	1.323	1.721	2.080	2.518	2.831	3.819
22	1.321	1.717	2.074	2.508	2.819	3.792
23	1.319	1.714	2.069	2.500	2.807	3.768
24	1.318	1.711	2.064	2.492	2.797	3.745
25	1.316	1.708	2.060	2.485	2.787	3.725
00						
26	1.315	1.706	2.056	2.479	2.779	3.707
27	1.314	1.703	2.052	2.473	2.771	3.690
28	1.313	1.701	2.048	2.467	2.763	3.674
29	1.311	1.699	2.045	2.462	2.756	3.659
30	1.310	1.697	2.042	2.457	2.750	3. 64 6
	ļ		. (Į.		

2. Critical Values of Chi-Square

Example: With 17 df and a .02 area in the upper tail, $\chi^2 = 30.995$

Degrees of Freedom,	Right-Tail Area								
df	0.10	0.05	0.02	0.01					
1	2.706	3.841	5.412	6.635					
2	4.605	5.991	7.824	9.210					
2	6.251	7.815	9.837	11.345					
4	7.779	9.488	11,668	13.277					
5	9.236	11.070	13.388	15.086					
6	10.645	12 592	15.033	16.812					
7	12.017	14.067	16.622	18.475					
8	13.362	15.507	18.168	20.090					
9	14.684	16.919	19.679	21.666					
10	15.987	18.307	21.161	23.209					
11	17.275	19.675	22.618	24.725					
12	18.549	21.026	24.054	26.217					
13	19.812	22.362	25.472	27.688					
14	21.064	23.685	26.873	29.141					
15	22.307	24.996	28.259	30.578					
16	23.542	26.296	29.633	32.000					
17	24.769	27. 587	30.995	33.409					
18	25.989	28. 869	32.346	34.805					
19	27.204	30.144	33.687	36.191					
20	28.412	31.410	35.020	37.566					
21	29.615	32.671	36.343	38.932					
22	30.813	33.924	37.659	40.289					
23	32.007	35.172	38.968	41.638					
24	33.196	36.415	40.270	42.980					
25	34.382	37.652	41.566	44.314					
26	35.563	38.885	42.856	45.642					
27	36.741	40.113	44.140	46.963					
28	37.916	41.337	45.419	48.278					
29	39.087	42.557	46.693	49.588					
30	40.256	43.773	47.962	50.892					

一、作答於試題上者,不予計分。

2.744

2.738

2.733

2.728

2.724

3.633

3.622

3.611

3.601

3.591

二、試題請隨卷繳交。

2.453

2.449

2.445

2.441

2.438

1.309

1.309

1.308

1.307

32 33 1.696

1.694

1.692

1.691

註

2.040

2.037

2.035

2.032